Rheolef  7.1
an efficient C++ finite element environment
sphere.icc
Go to the documentation of this file.
1 struct p {
26  Float operator() (const point& x) const {
27  if (d == 2) return 26*(pow(x[0],5) - 10*pow(x[0],3)*sqr(x[1])
28  + 5*x[0]*pow(x[1],4));
29  else return 3*sqr(x[0])*x[1] - pow(x[1],3);
30  }
31  p (size_t d1) : d(d1) {}
32  protected: size_t d;
33 };
34 struct f {
35  Float operator() (const point& x) const {
36  if (d == 2) return _p(x)/pow(norm(x),5);
37  else return alpha*_p(x);
38  }
39  f (size_t d1) : d(d1), _p(d1), alpha(0) {
40  Float pi = acos(Float(-1));
41  alpha = -(13./8.)*sqrt(35./pi);
42  }
43  protected: size_t d; p _p; Float alpha;
44 };
45 struct u_exact {
46  Float operator() (const point& x) const {
47  if (d == 2) return _f(x)/(25+sqr(norm(x)));
48  else return sqr(norm(x))/(12+sqr(norm(x)))*_f(x);
49  }
50  u_exact (size_t d1) : d(d1), _f(d1) {}
51  protected: size_t d; f _f;
52 };
53 Float phi (const point& x) { return norm(x) - 1; }
see the Float page for the full documentation
see the point page for the full documentation
T norm(const vec< T, M > &x)
norm(x): see the expression page for the full documentation
Definition: vec.h:387
space_mult_list< T, M > pow(const space_basic< T, M > &X, size_t n)
Definition: space_mult.h:120
Float phi(const point &x)
Definition: sphere.icc:53
Definition: cavity_dg.h:29
size_t d
point operator()(const point &x) const
Definition: cavity_dg.h:30
Float alpha
Definition: sphere.icc:43
p _p
Definition: sphere.icc:43
f(size_t d1)
Definition: sphere.icc:39
const Float pi
Definition: sphere.icc:25
size_t d
Definition: sphere.icc:32
p(size_t d1)
Definition: sphere.icc:31
Float operator()(const point &x) const
Definition: sphere.icc:26
point operator()(const point &x) const
f _f
Definition: sphere.icc:51
u_exact(size_t d1)
Definition: sphere.icc:50