The p-Laplacian problem by the Newton method
using namespace std;
int main(
int argc,
char**argv) {
string approx = (argc > 2) ? argv[2] : "P1";
Float p = (argc > 3) ? atof(argv[3]) : 1.5;
Float tol = (argc > 4) ? atof(argv[4]) : 1e5*eps;
size_t max_iter = (argc > 5) ? atoi(argv[5]) : 500;
derr <<
"# P-Laplacian problem by Newton:" << endl
<< "# geo = " << omega.name() << endl
<< "# approx = " << approx << endl
<< "# tol = " << tol << endl
<< "# max_iter = " << max_iter << endl;
dout << setprecision(numeric_limits<Float>::digits10)
<< catchmark(
"p") <<
p << endl
<< catchmark("u") << uh;
}
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
odiststream dout(cout)
see the diststream page for the full documentation
odiststream derr(cerr)
see the diststream page for the full documentation
This file is part of Rheolef.
int newton(const Problem &P, Field &uh, Float &tol, size_t &max_iter, odiststream *p_derr=0)
see the newton page for the full documentation
The p-Laplacian problem by the Newton method – class header.
int main(int argc, char **argv)
rheolef - reference manual