using namespace std;
int main(
int argc,
char**argv) {
Float tol = (argc > 1) ? atof(argv[1]) : 1e-15;
din >> catchmark(
"Bi") >> Bi
>> catchmark("sigma") >> sigma_h;
space Th = sigma_h.get_space();
geo omega = Th.get_geo();
integrate_option iopt;
iopt.set_order(4*(Th.degree()+1));
dout <<
"err_ys_l1 = " << err_ys_l1 << endl;
return err_ys_l1 < tol ? 0 : 1;
}
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
idiststream din
see the diststream page for the full documentation
odiststream dout(cout)
see the diststream page for the full documentation
see the space page for the full documentation
int main(int argc, char **argv)
Float delta(Float f, Float g)
The Mossolov problem for a circular pipe – exact solution.
This file is part of Rheolef.
T norm(const vec< T, M > &x)
norm(x): see the expression page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
details::field_expr_v2_nonlinear_node_nary< typename details::function_traits< Function >::functor_type,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits< Exprs >::type... > ::type compose(const Function &f, const Exprs &... exprs)
see the compose page for the full documentation
rheolef - reference manual